aisquared.platform package
Submodules
aisquared.platform.AISquaredAPIException module
aisquared.platform.AISquaredPlatformClient module
- class aisquared.platform.AISquaredPlatformClient.AISquaredPlatformClient(use_port: bool = False)[source]
Bases:
object
Client for interacting with the AI Squared platform programmatically
When using the client for the first time, it is important to run the client.login() method. When doing so, the client will ask for any required information interactively.
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> # If you have never logged in before, run the following code: >>> client.login() >>> # Test connection >>> client.test_connection() True
- add_users_to_group(group_id: str, user_ids: list, port: int = 8086, use_port: bool | None = None) bool [source]
Add users to a group
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.add_users_to_group('group_id', ['user_id_1', 'user_id_2']) True
- Parameters:
group_id (str) – The group to add the users to
user_ids (list of str) – The IDs of the users to add
port (int (default 8086)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – Returns True if operation was successful
- Return type:
bool
- property base_url: str
The base URL associated with the client
- create_group(display_name: str, role_id: str, port: int = 8086, use_port: bool | None = None) dict [source]
Create a group in the platform
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.create_group( 'group display name', 'role_id' ) *dictionary containing group information*
- Parameters:
display_name (str) – The display name of the group
role_id (str) – The role ID for the group
port (int (default 8086)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
group_info – Metadata about the created group
- Return type:
dict
- create_user(user_name: str, given_name: str, family_name: str, email: str, role_id: str, active: bool = True, middle_name: str | None = None, company_id: str | None = None, password: str | None = None, port: int = 8085, use_port: bool | None = None) dict [source]
Create a user within the platform
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.create_user( 'user name', 'given_name', 'family_name', 'user_email', 'role_id' ) *Dictionary with user information*
- Parameters:
user_name (str) – The display name of the user
given_name (str) – The user’s first name
family_name (str) – The user’s last name
email (str) – The user’s email
role_id (str) – The ID of the role to be given to the user
active (bool (default True)) – Whether the user is active
middle_name (str or None (default None)) – The user’s middle name
company_id (str or None (default None)) – The user’s company ID
password (str or None (default None)) – The user’s password
port (int (default 8085)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
user_data – Metadata about the user
- Return type:
dict
- delete_group(group_id, port=8086, use_port: bool | None = None) bool [source]
Delete a group from the platform
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.delete_group('group_id') True
- Parameters:
group_id (str) – The ID of the group to delete
port (int (default 8086)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
result – Returns True if successful
- Return type:
bool
- delete_model(id: str, port: int = 8080, use_port: bool | None = None) bool [source]
Delete a model
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.delete_model('model_id') True
- Parameters:
id (str) – The ID for the model
port (int (default 8080)) – The API port for the model. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – Whether the action was successful
- Return type:
bool
- delete_user(user_id: str, port: int = 8085, use_port: bool | None = None) bool [source]
Delete a user from the system
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.delete_user('user_id') True
- Parameters:
user_id (str) – The user’s ID
port (int (default 8085)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
result – Returns True if the call is successful
- Return type:
bool
- get_group(group_id: str, port: int = 8086, use_port: bool | None = None) dict [source]
Retrieve information about a group
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.get_group('group_id') *dictionary containing group data*
- Parameters:
group_id (str) – The ID of the group requested
port (int (default 8086)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
group_info – The information about the group
- Return type:
dict
- get_group_id_by_name(group_name: str, port: int = 8083, use_port: bool | None = None) str [source]
Get the ID of a group by searching for its display name
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.get_group_id_by_name('Group Name') *group_id*
- Parameters:
group_name (str) – The display name of the group
port (int (default 8083)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
group_id – The ID of the group
- Return type:
str
- get_model(id: str, port: int = 8080, use_port: bool | None = None) dict [source]
Retrieve a model configuration
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.get_model('model_id') *JSON Response including model data and metadata*
- Parameters:
id (str) – The ID for the model
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
model – Metadata about the model coupled with the model’s configuration information
- Return type:
dictionary
- get_model_id_by_name(model_name: str, port: int = 8080, use_port: bool | None = None) str [source]
Retrieve a model’s ID using the name of the model
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.get_model_id_by_name('my_awesome_model') *model_id*
- Parameters:
model_name (str) – The name of the model
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
model_id – The model’s ID
- Return type:
str
- get_role_id_by_role_name(role_name: str, port: int = 8086, use_port: bool | None = None) str [source]
Get the ID of a role by searching for its display name
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.get_role_id_by_role_name('Role Name') *role_id*
- Parameters:
role_name (str) – The name of the role
port (int (default 8086)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
role_id – The ID of the role
- Return type:
str
- get_user(user_id: str, port: int = 8085, use_port: bool | None = None) dict [source]
Retrieve a user’s information from the platform
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.get_user('user_id') *dictionary with results*
- Parameters:
user_id (str) – The ID of the user
port (int (default 8085)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
user_info – The information about the user
- Return type:
dict
- get_user_id_by_name(name: str, port: int = 8080, use_port: bool | None = None) str [source]
Get a user’s ID from their display name
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.get_user_id_by_name('User Name') *user_id*
- Parameters:
name (str) – The display name of the user
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
id – The ID of the user
- Return type:
str
- property headers
Headers used for authentication with the AI Squared Platform
- list_group_users(group_id: str, as_df: bool = True, port: int = 8083, use_port: bool | None = None) DataFrame | dict [source]
List users in a group
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.list_group_users('group_id') *DataFrame with results*
- Parameters:
group_id (str) – The ID for the group
as_df (bool (default True)) – Whether to return the response as a pandas DataFrame
port (int (default 8083)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
users – The response from the API
- Return type:
pandas DataFrame or dictionary
- list_groups(max_count: int = 100, as_df: bool = True, port: int = 8083, use_port: bool | None = None) DataFrame | dict [source]
List all groups
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.list_groups() *DataFrame with results*
- Parameters:
max_count (int (default 100)) – The maximum number of groups to return
as_df (bool (default True)) – Whether to return the result as a pandas DataFrame
port (int (default 8083)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
groups – The response from the API
- Return type:
pandas DataFrame or dictionary
- list_model_feedback(model_id: str, limit: int = 10, as_df: bool = True, port: int = 8080, use_port: bool | None = None) dict | DataFrame [source]
List feedback on a model
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.list_model_feedback('model_id') *DataFrame with Results*
- Parameters:
model_id (str) – The ID of the model
limit (int (default 10)) – The maximum number of feedback items to return
port (int (default 8080)) – The API port to use. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
feedback – The feedback
- Return type:
dict or pandas DataFrame
- list_model_prediction_feedback(model_id: str, as_df: bool = True, port: int = 8080, use_port: bool | None = None) dict | DataFrame [source]
List all feedback for a model
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.list_model_prediction_feedback('model_id') *DataFrame with Results*
- Parameters:
model_id (str) – The ID of the model requested
as_df (bool (default True)) – Whether to return the results as a pandas DataFrame
port (int (default 8080)) – The API port to use. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
results – The results from the platform
- Return type:
dict or pandas DataFrame
- list_model_usage_metrics(model_id: str, period: str = 'hourly', as_df: bool = True, port: int = 8080, use_port: bool | None = None) dict | DataFrame [source]
Get usage metrics for a model
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.get_model_usage_metrics('model_id') *DataFrame with results*
- Parameters:
model_id (str) – The ID of the model
period (str (default 'hourly')) – The period to group metrics into
as_df (bool (default True)) – Whether to return results as a pandas DataFrame
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
results – The results from the platform
- Return type:
pandas DataFrame or dict
- list_model_users(id: str, as_df: bool = True, port: int = 8080, use_port: bool | None = None) DataFrame | dict [source]
List users for a model
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.list_model_users('model_id') *DataFrame with results*
- Parameters:
id (str) – The ID for the model
as_df (bool (default True)) – Whether to return the response as a Pandas DataFrame
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
model_users – The users for the model
- Return type:
pandas DataFrame or dictionary
- list_models(as_df: bool = True, port: int = 8080, use_port: bool | None = None) DataFrame | dict [source]
List models within the platform
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.list_models() *DataFrame with results*
- Parameters:
as_df (bool (default True)) – Whether to return the response as a pandas DataFrame
port (default None) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
models – The models
- Return type:
pandas DataFrame or dictionary
- list_prediction_feedback(prediction_id: str, as_df: bool = True, port: int = 8080, use_port: bool | None = None) DataFrame | dict [source]
List prediction feedback given a prediction ID
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.list_prediction_feedback('prediction_id') *DataFrame with results*
- Parameters:
prediction_id (str) – The prediction ID
as_df (bool (default True)) – Whether to return the results as a pandas DataFrame
port (int (default 8080)) – The API port to use. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
results – The results from the platform
- Return type:
pandas DataFrame or dict
- list_roles(as_df: bool = True, port: int = 8086, use_port: bool | None = None) DataFrame | dict [source]
List the roles available in the platform
Example usage:
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.list_roles() *DataFrame with results*
- Parameters:
as_df (bool (default True)) – Whether to return the results as a pandas DataFrame
port (int (default 8086)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
roles – The roles
- Return type:
pandas DataFrame or dict
- list_user_usage_metrics(user_id: str, period: str = 'hourly', as_df: bool = True, port: int = 8080, use_port: bool | None = None) dict | DataFrame [source]
Get usage metrics for a user
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.get_user_usage_metrics('user_id') *DataFrame with results*
- Parameters:
user_id (str) – The ID of the user
period (str (default 'hourly')) – The period to group metrics into
as_df (bool (default True)) – Whether to return results as a pandas DataFrame
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
results – The results from the platform
- Return type:
pandas DataFrame or dict
- list_users(max_count: int = 100, as_df: bool = True, port: int = 8080, use_port: bool | None = None) DataFrame | dict [source]
List all users
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.list_users() *DataFrame with results*
- Parameters:
max_count (int (default 100)) – The maximum number of users to return
as_df (bool (default True)) – Whether to return the data as a Pandas DataFrame
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
users – The response from the API
- Return type:
pandas DataFrame or dictionary
- login(url: str | None = None, port: int = 8080, username: str | None = None, password: str | None = None, use_port: bool | None = None) None [source]
Log in to the platform programmatically. If no url, username, or password are provided, logs in interactively
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.login() Enter URL: https://platform.squared.ai Enter Username: your.email@your_domain.com Enter Password: <hidden>
- Parameters:
url (str or None (default None)) – The URL for the platform API
port (int or None (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
username (str or None (default None)) – The username
password (str or None (default None)) – The password
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- property password: str
The password associated with the client
- remove_users_from_group(group_id: str, user_ids: list, port: int = 8086, use_port: bool | None = None) bool [source]
Remove users from a group
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.remove_users_from_group('group_id', ['user_id_1', 'user_id_2']) True
- Parameters:
group_id (str) – The ID of the group
user_ids (list of str) – The IDs of the users to remove
port (int (default = 8086)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – Returns True if successful
- Return type:
bool
Share a model with a group
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.share_model_with_group('model_id', 'group_id') True
- Parameters:
model_id (str) – The ID for the model to be shared
group_id (str) – The ID for the group to be shared with. This can be handled automatically by the platform ALB
port (int (default 8080)) – The API port to use. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – Returns True if successful
- Return type:
bool
Share a model with a user
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.share_model_with_user('model_id', 'user_id') True
- Parameters:
model_id (str) – The ID for the model
user_id (str) – The ID for the user
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – Whether the action was successful
- Return type:
bool
- test_connection(port: int = 8080, use_port: bool | None = None) bool [source]
Test whether there is a healthy connection to the platform
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.test_connection() True
- Parameters:
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – True if connection was successful
- Return type:
bool
- property token: str
The token associated with the client
Unshare a model with a group
>>> import aisquared >>> client = aisquared.client.AISquaredPlatformClient() >>> client.unshare_model_with_group('model_id', 'group_id') True
- Parameters:
model_id (str) – The ID of the model
group_id (str) – The ID of the group
port (int (default 8080)) – The API port to use. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – Returns True if successful
- Return type:
bool
Unshare a model with a user
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.unshare_model_with_user('model_id', 'user_id') True
- Parameters:
model_id (str) – The ID for the model
user_id (str) – The ID for the user
port (int (default 8080)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – Whether the action was successful
- Return type:
bool
- update_group(group_id: str, display_name: str, role_id: str, port: int = 8086, use_port: bool | None = None) bool [source]
Update information about a group
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.update_group( 'group_id', 'group display name', 'role_id' ) True
- Parameters:
group_id (str) – The ID of the group to update
display_name (str) – The display name of the group
role_id (str) – The ID of the role for the group
port (int (default 8086)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – Returns True if successful
- Return type:
bool
- update_user(user_id: str, user_name: str, given_name: str, family_name: str, email: str, role_id: str, active: bool = True, middle_name: str | None = None, company_id: str | None = None, password: str | None = None, port: int = 8085, use_port: bool | None = None) bool [source]
Update information about a user
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.update_user( 'user_id', 'user name', 'given_name', 'family_name', 'user_email', 'role_id' ) True
- Parameters:
user_id (str) – The ID of the user to update
user_name (str) – The display name of the user
given_name (str) – The first name of the user
family_name (str) – The last name of the user
email (str) – The user’s email
role_id (str) – The ID of the user’s role
active (bool (default True)) – Whether the user is active
middle_name (str or None (default None)) – The user’s middle name
company_id (str or None (default None)) – The user’s company ID
password (str or None (default None)) – The user’s password
port (int (default 8085)) – The API port for the call. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
success – Returns True if update is successful
- Return type:
bool
- upload_model(model_file: str, port: int = 8081, use_port: bool | None = None) str [source]
Upload a model to the platform
>>> import aisquared >>> client = aisquared.platform.AISquaredPlatformClient() >>> client.upload_model('my_model_filename.air') True
- Parameters:
model_file (path or path-like) – The path to the model file
port (int (default 8081)) – The API port to use. This can be handled automatically by the platform ALB
use_port (bool or None (default None)) – Whether to use port in URL formatting. If None, defaults to class value
- Returns:
successful – Whether the action was successful
- Return type:
bool
- property use_port
- property username: str
The username associated with the client
aisquared.platform.DatabricksAPIException module
aisquared.platform.DatabricksClient module
- class aisquared.platform.DatabricksClient.DatabricksClient[source]
Bases:
object
Client for working with a connected Databricks environment
When using the client for the first time, it is important to authenticate the client using the client.login() method. When doing so, the client will ask for any required information interactively.
>>> import aisquared >>> client = aisquared.platform.DatabricksClient() >>> # If you have never logged in before, run the following code: >>> client.login() >>> # Interactive session requesting required information
- property base_url: str
The base URL for the workspace
- create_compute(compute_name: str, spark_version: str, node_type_id: str) dict [source]
Create a compute resource
- Parameters:
compute_name (str) – The name of the compute to create
spark_version (str) – The spark version to use for the compute resource
node_type_id (str) – The node type ID to use
- Returns:
compute_info – The information about the created compute resource
- Return type:
dict
- create_job(job_name: str, tasks: list, libraries: list, compute_name: str, spark_version: str, node_type_id: str, cron_syntax: str | None = None, timezone: str | None = None) bool [source]
Create a job using notebooks and/or scripts in the workspace
- Parameters:
job_name (str) – The name for the job
tasks (list of dict) – List of {task_name : task_script} dictionary pairs to run in the job
libraries (list of str) – The dependent libraries to install on all compute
compute_name (str) – The name of the compute to provision specifically for this job
spark_version (str) – The version of Spark to use on the compute instances
node_type_id (str) – The node type to use
cron_syntax (str or None (default None)) – If the job is to be set to a schedule, the cron syntax for that schedule
timezone (str or None (default None)) – The timezone to set the schedule to, if cron syntax is provided
- Returns:
success – Whether the create job call was successful
- Return type:
bool
- create_served_model(model_name: str, model_version: str, workload_size: str, scale_to_zero_enabled: bool = True, workload_type: str = 'CPU') dict [source]
Create a model serving endpoint
- Parameters:
model_name (str) – The name of the model to serve
model_version (str) – The version of the model to serve
workload_size (str) – The workload size of the serving endpoint
scale_to_zero_enabled (bool (default True)) – Whether to allow for scaling the endpoint to zero
type (workload) – The workload type - either ‘CPU’ or ‘GPU’
- Returns:
configuration – Configuration information about the serving endpoint
- Return type:
dict
- delete_compute(compute_id: str) bool [source]
Delete a compute resource in the workspace
- Parameters:
compute_id (str) – The ID for the compute to delete
- Returns:
success – Whether the operation was successful
- Return type:
bool
- delete_from_workspace(filename: str) bool [source]
Delete a file from the workspace
- Parameters:
filename (str) – The name of the file to delete
- Returns:
success – Whether the operation is successful
- Return type:
bool
- delete_job(job_id: str) bool [source]
Delete a job from the workspace
- Parameters:
job_id (str) – The ID of the job to delete
- Returns:
success – Whether the delete operation was successful
- Return type:
bool
- delete_registered_model(model_name: str) bool [source]
Delete a registered model
- Parameters:
model_name (str) – The name of the model to delete
- Returns:
success – Whether the delete operation was successful
- Return type:
bool
- delete_served_model(model_name: str) bool [source]
Delete a served model in the workspace
- Parameters:
model_name (str) – The name of the model to delete
- Returns:
success – Whether the delete operation was successful
- Return type:
bool
- download_from_workspace(filename: str) str [source]
Download a file from the workspace
- Parameters:
filename (str) – The filename of the file to download
- Returns:
contents – The contents of the file
- Return type:
str
- property headers: dict
API headers for calls to the API
- list_compute(as_df: bool = True) dict | DataFrame [source]
List compute in the workspace
- Parameters:
as_df (bool (default True)) – Whether to return a pandas DataFrame
- Returns:
compute – The compute resources in the workspace
- Return type:
dict or pd.DataFrame
- list_jobs(as_df: bool = True) dict | DataFrame [source]
List all jobs in the workspace
- Parameters:
as_df (bool (default True)) – Whether to return a pandas DataFrame
- Returns:
jobs – The jobs that exist in the workspace
- Return type:
dict or pandas DataFrame
- list_registered_models(as_df: bool = True) dict | DataFrame [source]
List registered models in the workspace
- Parameters:
as_df (bool (default True)) – Whether to return a pandas DataFrame
- Returns:
models – The models in the workspace
- Return type:
dict or pandas DataFrame
- list_served_models(as_df: bool = True) dict | DataFrame [source]
List served models in the workspace
- Parameters:
as_df (bool (default True)) – Whether to return results as a pandas DataFrame
- Returns:
models – The models served in the workspace
- Return type:
dict or pandas DataFrame
- list_workspace(as_df: bool = True) DataFrame | dict [source]
List files in the connected Databricks workspace
- Parameters:
as_df (bool (default True)) – Whether to return the results as a pandas DataFrame
- Returns:
results – The files in the workspace
- Return type:
dict or pd.DataFrame
- login(url: str | None = None, username: str | None = None, token: str | None = None, persist: bool = True) None [source]
Log in to the Databricks environment programmatically
>>> import aisquared >>> client = aisquared.platform.DatabricksClient() >>> client.login() Enter URL: {Databricks_workspace_url} Enter Username: your.email@your_domain.com Enter Secret Token: <hidden>
- Parameters:
url (str or None (default None)) – The URL of the Databricks workspace
username (str or None (default None)) – The username in the Databricks workspace
token (str or None (default None)) – The secret token for the Databricks workspace
persist (bool (default True)) – Whether to persist the login information, eliminating the need to run this command again in the future
- run_job(job_id: str) int [source]
Run a job
- Parameters:
job_id (str) – The ID of the job to run
- Returns:
run_id – The ID of the specific run that was created
- Return type:
int
- start_compute(compute_id: str) bool [source]
Start a compute resource
- Parameters:
compute_id (str) – The ID of the compute to start
- Returns:
success – Whether the start operation was successful
- Return type:
bool
- stop_compute(compute_id: str) bool [source]
Stop a compute resource
- Parameters:
compute_id (str) – The ID of the compute to start
- Returns:
success – Whether the stop operation was successful
- Return type:
bool
- property token: str
The token to use for the workspace
- update_job(job_id: int, job_name: str, tasks: list, libraries: list, compute_name: str, spark_version: str, node_type_id: str, cron_syntax: str | None = None, timezone: str | None = None) bool [source]
Update a job by Job ID using notebooks and/or scripts in the workspace
- Parameters:
job_id (int) – The unique identifier of the job to update
job_name (str) – The new name for the job
tasks (list of dict) – List of {task_name : task_script} dictionary pairs to run in the updated job
libraries (list of str) – The dependent libraries to install on all compute for the new job
compute_name (str) – The name of the compute to provision specifically for the new job
spark_version (str) – The version of Spark to use on the compute instances
node_type_id (str) – The node type to use
cron_syntax (str or None (default None)) – If the new job is to be set to a schedule, the cron syntax for that schedule
timezone (str or None (default None)) – The timezone to set the schedule to, if cron syntax is provided
- Returns:
success – Whether the update job call was successful
- Return type:
bool
- upload_to_workspace(filename: str, overwrite: bool = False) bool [source]
Upload a file to the workspace
- Parameters:
filename (str) – The name of the file to upload
overwrite (bool (default False)) – Whether to overwrite the file if one of the same name already exists in the workspace
- Returns:
success – Whether the upload was successful
- Return type:
bool
- property username: str
The user’s username
aisquared.platform.NoResultsFoundError module
aisquared.platform.additional_utils module
aisquared.platform.crudl module
aisquared.platform.feedback module
aisquared.platform.metrics module
aisquared.platform.sharing module
aisquared.platform.user_group module
Module contents
Utilities for interacting with the AI Squared Platform.
The primary class within this subpackage is the AISquaredPlatformClient class, which has the capabilities to interact with much of the functionality in the AI Squared platform. For more information about this class, please see its documentation.