aisquared.config.postprocessing package
Submodules
aisquared.config.postprocessing.BinaryClassification module
- class aisquared.config.postprocessing.BinaryClassification.BinaryClassification(label_map: list, threshold: float = 0.5)[source]
Bases:
BaseObject
Postprocesssing configuration object for binary classification
Example usage
>>> import aisquared >>> my_obj = aisquared.config.postprocessing.BinaryClassification( ['class1', 'class2'] ) >>> my_obj.to_dict() {'className': 'BinaryClassification', 'params': {'labelMap': ['class1', 'class2'], 'threshold': 0.5}}
- property label_map
- property threshold
aisquared.config.postprocessing.MulticlassClassification module
- class aisquared.config.postprocessing.MulticlassClassification.MulticlassClassification(label_map: list)[source]
Bases:
BaseObject
Postprocessing configuration object for multiclass classification
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.postprocessing.MulticlassClassification( ['class1', 'class2', 'class3'] ) >>> my_obj.to_dict() {'className': 'MulticlassClassification', 'params': {'labelMap': ['class1', 'class2', 'class3']}}
- property label_map
aisquared.config.postprocessing.ObjectDetection module
- class aisquared.config.postprocessing.ObjectDetection.ObjectDetection(label_map: list, threshold: float = 0.5)[source]
Bases:
BaseObject
Postprocessing configuration object for object detection
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.postprocessing.ObjectDetection( ['class1', 'class2', 'class3'] ) >>> my_obj.to_dict() {'className': 'ObjectDetection', 'params': {'labelMap': ['class1', 'class2', 'class3'], 'threshold': 0.5}}
- property label_map
- property threshold
aisquared.config.postprocessing.Regression module
- class aisquared.config.postprocessing.Regression.Regression(min: int | float | None = None, max: int | float | None = None, round: bool = False)[source]
Bases:
BaseObject
Postprocessing configuration object for Regression
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.postprocessing.Regression( 10, 100 ) >>> my_obj.to_dict() {'className': 'Regression', 'params': {'min': 10, 'max': 100, 'round': False}}
- property max
- property min
- property round
Module contents
The aisquared.config.postprocessing subpackage contains objects for configuring how predictions are postprocessed.