aisquared.config.rendering package
Submodules
aisquared.config.rendering.BarChartRendering module
- class aisquared.config.rendering.BarChartRendering.BarChartRendering(label: str, id: str, chart_name: str, container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_value: str, display_legend: bool, legend_icon: str, labels_key: str | None = None, width: str = 'auto', height: str = 'auto', xOffset: str = '0', yOffset: str = '0', labels: list | None = None, consolidate_rows: bool = True, css_params: dict | None = None)[source]
Bases:
BaseObject
Rendering class for rendering a Bar Chart
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.BarChartRendering( 'my_label', 'my_id', 'my_bar_chart', 'my_container_id', 'name', 'value', 'name_value', True, 'circle' ) >>> my_obj.to_dict() {'className': 'BarChartRendering', 'label': 'my_label', 'params': {'id': 'my_id', 'chartName': 'my_bar_chart', 'containerId': 'my_container_id', 'displayLegend': True, 'legendIcon': 'circle', 'width': 'auto', 'height': 'auto', 'xOffset': '0', 'yOffset': '0', 'datasource': [{'labels': None, 'labelsKey': None, 'consolidateRows': True, 'predictionNameKey': 'name', 'predictionValueKey': 'value', 'predictionNameValue': 'name_value'}]}}
aisquared.config.rendering.ChatRendering module
- class aisquared.config.rendering.ChatRendering.ChatRendering(return_key, prediction_value_key=None, sender_name='You', responder_name='Chatbot')[source]
Bases:
BaseObject
Rendering for a chatbot use case
- property prediction_value_key
- property responder_name
- property return_key
- property sender_name
aisquared.config.rendering.ContainerRendering module
- class aisquared.config.rendering.ContainerRendering.ContainerRendering(label: str, id: str, query_selector: str, position: str = 'absolute', static_position: str | None = None, width: str = 'auto', height: str = 'auto', display: str = 'flex', xOffset: str = '0', yOffset: str = '0', orientation: str = 'column', css_params: dict | None = None)[source]
Bases:
BaseObject
Rendering for a container
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.ContainerRendering( 'my container', 'myContainerID', "[data-id='tabpanel-general']" ) >>> my_obj.to_dict() {'className': 'ContainerRendering', 'label': 'my container', 'params': {'id': 'myContainerID', 'width': 'auto', 'height': 'auto', 'display': 'flex', 'xOffset': '0', 'yOffset': '0', 'position': 'absolute', 'orientation': 'column', 'querySelector': "[data-id='tabpanel-general']", 'staticPosition': None}}
- property display
- property height
- property id
- property label
- property orientation
- property position
- property query_selector
- property static_position
- property width
- property xOffset
- property yOffset
aisquared.config.rendering.CustomRendering module
- class aisquared.config.rendering.CustomRendering.CustomRendering(id: str, content_html: str, content_script: str, content_style: str, query_selector: str | None = None)[source]
Bases:
BaseObject
- property content_html
- property content_script
- property content_style
- property id
- property query_selector
aisquared.config.rendering.DashboardRendering module
THIS MODULE IS IN DEVELOPMENT AND NOT STABLE. PLEASE USE WITH CAUTION AND DO NOT USE FOR ANY PRODUCTION WORKLOADS
- class aisquared.config.rendering.DashboardRendering.DashboardRendering[source]
Bases:
BaseObject
THIS CLASS IS IN DEVELOPMENT AND IS NOT STABLE. PLEASE USE WITH CAUTION AND DO NOT USE FOR ANY PRODUCTION WORKLOADS
- add_bar_chart(container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_value: str, chart_colors: list, chart_labels: list, width: str = 'auto', height: str = 'auto', xOffset: str = '0', yOffset: str = '0', id: str | None = None, label: str | None = None, chart_name: str | None = None)[source]
- add_container(query_selector: str, width: str = 'auto', height: str = 'auto', display: str = 'flex', xOffset: str = '0', yOffset: str = '0', position: str = '', orientation: str = 'column', id: str | None = None, label: str | None = None)[source]
- add_doughnut_chart(container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_value: str, chart_colors: list, chart_labels: list, display_legend: bool = True, legend_icon: str = 'circle', width: str = 'auto', height: str = 'auto', xOffset: str = '0', yOffset: str = '0', id: str | None = None, label: str | None = None, chart_name: str | None = None)[source]
- add_html_tag(container_id: str, html_content: str, prediction_name_key: str = '', prediction_value_key: str = '', prediction_name_value: str = '', extra_content_tag: str = 'strong', injection_action: str = 'prepend', id: str | None = None, content: str = '', label: str | None = None)[source]
- add_line_chart(container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_value: str, chart_colors: list, chart_labels: list, width: str = 'auto', height: str = 'auto', xOffset: str = '0', yOffset: str = '0', id: str | None = None, label: str | None = None, chart_name: str | None = None)[source]
- add_pie_chart(container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_value: str, chart_colors: list, chart_labels: list, display_legend: bool = True, legend_icon: str = 'circle', width: str = 'auto', height: str = 'auto', xOffset: str = '0', yOffset: str = '0', id=None, label: str | None = None, chart_name: str | None = None)[source]
- add_table(container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_values: str, table_name: str = '', id: str | None = None, label: str | None = None)[source]
- property steps
aisquared.config.rendering.DashboardReplacementRendering module
- class aisquared.config.rendering.DashboardReplacementRendering.DashboardReplacementRendering(anchor_selector: str, where_replace: str = '', label: str = '')[source]
Bases:
BaseObject
Rendering for dashboard replacement
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.DashboardReplacementRendering( 'test_anchor_selector' ) >>> my_obj.to_dict() {'className': 'DashboardReplacementRendering', 'label': '', 'params': {'anchorSelector': 'test_anchor_selector', 'whereReplace': ''}}
- property anchor_selector
- property label
- property where_replace
aisquared.config.rendering.DocumentRendering module
- class aisquared.config.rendering.DocumentRendering.DocumentRendering(prediction_key: str = 'className', words: list | dict | str | None = None, documents: list | dict | str | None = None, include_probability: bool = False, probability_key: str = 'probability', underline_color: str = 'blue', classes: list | None = None, threshold_key: str | None = None, threshold_value: int | float | None = None)[source]
Bases:
BaseObject
Object which dictates how to render predictions on entire documents
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.DocumentRendering() >>> my_obj.to_dict() {'className': 'DocumentRendering', 'params': {'predictionKey': 'className', 'words': None, 'documents': None, 'includeProbability': False, 'probabilityKey': 'probability', 'underlineColor': 'blue', 'classes': None, 'thresholdKey': None, 'thresholdValue': None}}
- property classes
- property documents
- property include_probability
- property prediction_key
- property probability_key
- property threshold_key
- property threshold_value
- property underline_color
- property words
aisquared.config.rendering.DoughnutChartRendering module
- class aisquared.config.rendering.DoughnutChartRendering.DoughnutChartRendering(label: str, id: str, chart_name: str, container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_value: str, display_legend: bool, legend_icon: str, labels_key: str | None = None, width: str = 'auto', height: str = 'auto', xOffset: str = '0', yOffset: str = '0', labels: list | None = None, consolidate_rows: bool = True, css_params: dict | None = None)[source]
Bases:
BaseObject
Rendering class for rendering a Doughnut Chart
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.DoughnutChartRendering( 'my_label', 'my_id', 'my_doughnut_chart', 'my_container_id', 'name', 'value', 'name_value', True, 'circle' ) >>> my_obj.to_dict() {'className': 'DoughnutChartRendering', 'label': 'my_label', 'params': {'id': 'my_id', 'chartName': 'my_doughnut_chart', 'containerId': 'my_container_id', 'displayLegend': True, 'legendIcon': 'circle', 'width': 'auto', 'height': 'auto', 'xOffset': '0', 'yOffset': '0', 'datasource': [{'labels': None, 'labelsKey': None, 'consolidateRows': True, 'predictionNameKey': 'name', 'predictionValueKey': 'value', 'predictionNameValue': 'name_value'}]}}
aisquared.config.rendering.FilterRendering module
- class aisquared.config.rendering.FilterRendering.FilterRendering(source: str, key: str, qualifier: str, value: list | str | int | float)[source]
Bases:
BaseObject
Object which dictates how predictions are to be passed to downstream analytics
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.FilterRendering( 'inputs', 'key', 'gt', 0.2 ) >>> my_obj.to_dict() {'className': 'FilterRendering', 'params': {'source': 'inputs', 'key': 'key', 'qualifier': 'gt', 'value': 0.2}}
- property key
- property qualifier
- property source
- property value
aisquared.config.rendering.HTMLTagRendering module
- class aisquared.config.rendering.HTMLTagRendering.HTMLTagRendering(label: str, id: str, container_id: str, html_content: str, extra_content_tag: str, injection_action: str, prediction_name_key: str, prediction_value_key: str, prediction_name_value: str, content: str = '', css_params: dict | None = None)[source]
Bases:
BaseObject
Rendering for HTML tags
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.HTMLTagRendering( 'my HTML tag', 'MyHTMLTagRenderingID', 'MyContainerID', '<p>Example Text</p>', 'extra_tag', 'append', 'name_key', 'value_key', 'name_value' ) >>> my_obj.to_dict() {'className': 'HTMLTagRendering', 'label': 'my HTML tag', 'params': {'id': 'MyHTMLTagRenderingID', 'containerId': 'MyContainerID', 'htmlContent': '<p>Example Text</p>', 'extraContentTag': 'extra_tag', 'injectionAction': 'append', 'predictionNameKey': 'name_key', 'predictionValueKey': 'value_key', 'predictionNameValue': 'name_value', 'content': ''}}
aisquared.config.rendering.ImageRendering module
- class aisquared.config.rendering.ImageRendering.ImageRendering(color: str = 'blue', thickness: str = '5', placement: str = 'bottomleft', include_probability: bool = False, badge_color: str = 'white', font_color: str = 'black', font_size: str = '5', classes: list | None = None, threshold_key: str | None = None, threshold_value: int | float | None = None)[source]
Bases:
BaseObject
Object which dictates how to render images
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.ImageRendering() >>> my_obj.to_dict() {'className': 'ImageRendering', 'params': {'color': 'blue', 'thickness': '5', 'placement': 'bottomleft', 'includeProbability': False, 'badgeColor': 'white', 'fontColor': 'black', 'fontSize': '5', 'classes': None, 'thresholdKey': None, 'thresholdValue': None}}
- property badge_color
- property classes
- property color
- property font_color
- property font_size
- property include_probability
- property placement
- property thickness
- property threshold_key
- property threshold_value
aisquared.config.rendering.LineChartRendering module
- class aisquared.config.rendering.LineChartRendering.LineChartRendering(label: str, id: str, chart_name: str, container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_value: str, display_legend: bool, legend_icon: str, labels_key: str, width: str = 'auto', height: str = 'auto', xOffset: str = '0', yOffset: str = '0', labels: list | None = None, consolidate_rows: bool = True, css_params: dict | None = None)[source]
Bases:
BaseObject
Rendering class for rendering a Line Chart
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.LineChartRendering( 'my_label', 'my_id', 'my_line_chart', 'my_container_id', 'name', 'value', 'name_value', True, 'circle', 'labels' ) >>> my_obj.to_dict() {'className': 'LineChartRendering', 'label': 'my_label', 'params': {'id': 'my_id', 'chartName': 'my_line_chart', 'containerId': 'my_container_id', 'displayLegend': True, 'legendIcon': 'circle', 'width': 'auto', 'height': 'auto', 'xOffset': '0', 'yOffset': '0', 'datasource': [{'labels': None, 'labelsKey': 'labels', 'consolidateRows': True, 'predictionNameKey': 'name', 'predictionValueKey': 'value', 'predictionNameValue': 'name_value'}]}}
aisquared.config.rendering.ObjectRendering module
- class aisquared.config.rendering.ObjectRendering.ObjectRendering(color: str = 'blue', thickness: str = '5', placement: str = 'bottomleft', include_probability: bool = False, badge_color: str = 'white', font_color: str = 'black', font_size: str = '5')[source]
Bases:
BaseObject
Object which dictates how to render object detection in images
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.ObjectRendering() >>> my_obj.to_dict() {'className': 'ObjectRendering', 'params': {'color': 'blue', 'thickness': '5', 'placement': 'bottomleft', 'includeProbability': False, 'badgeColor': 'white', 'fontColor': 'black', 'fontSize': '5'}}
- property badge_color
- property color
- property font_color
- property font_size
- property include_probability
- property placement
- property thickness
aisquared.config.rendering.PieChartRendering module
- class aisquared.config.rendering.PieChartRendering.PieChartRendering(label: str, id: str, chart_name: str, container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_value: str, display_legend: bool, legend_icon: str, labels_key: str | None = None, width: str = 'auto', height: str = 'auto', xOffset: str = '0', yOffset: str = '0', labels: list | None = None, consolidate_rows: bool = True, css_params: dict | None = None)[source]
Bases:
BaseObject
Rendering class for rendering a Pie Chart
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.PieChartRendering( 'my_label', 'my_id', 'my_doughnut_chart', 'my_container_id', 'name', 'value', 'name_value', True, 'circle' ) >>> my_obj.to_dict() {'className': 'PieChartRendering', 'label': 'my_label', 'params': {'id': 'my_id', 'chartName': 'my_doughnut_chart', 'containerId': 'my_container_id', 'displayLegend': True, 'legendIcon': 'circle', 'width': 'auto', 'height': 'auto', 'xOffset': '0', 'yOffset': '0', 'datasource': [{'labels': None, 'labelsKey': None, 'consolidateRows': True, 'predictionNameKey': 'name', 'predictionValueKey': 'value', 'predictionNameValue': 'name_value'}]}}
aisquared.config.rendering.SOSRendering module
- class aisquared.config.rendering.SOSRendering.SOSRendering(can_toggle: bool, label: str = '')[source]
Bases:
BaseObject
Rendering of an SOS dashboard
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.SOSRendering(True) >>> my_obj.to_dict() {'className': 'SOSRendering', 'label': '', 'params': {'canToggle': True}}
- property can_toggle
- property label
aisquared.config.rendering.TableRendering module
- class aisquared.config.rendering.TableRendering.TableRendering(label: str, id: str, container_id: str, prediction_name_key: str, prediction_value_key: str, prediction_name_values: str, table_name: str = '', css_params: dict | None = None)[source]
Bases:
BaseObject
Class for rendering tables
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.TableRendering( 'my table', 'MyTableID', 'MyContainerID', 'name_key', 'value_key', 'name_values' ) >>> my_obj.to_dict() {'className': 'TableRendering', 'label': 'my table', 'params': {'id': 'MyTableID', 'containerId': 'MyContainerID', 'predictionNameKey': 'name_key', 'predictionValueKey': 'value_key', 'predictionNameValues': 'name_values', 'tableName': ''}}
aisquared.config.rendering.TextRendering module
- class aisquared.config.rendering.TextRendering.TextRendering(prediction_value_key: str | None = None)[source]
Bases:
BaseObject
Class for rendering text
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.TextRendering( prediction_value_key = 'my_key' ) >>> my_obj.to_dict() {'className': 'TextRendering', 'params': {'predictionValueKey': 'my_key'}}
- property prediction_value_key
aisquared.config.rendering.WordRendering module
- class aisquared.config.rendering.WordRendering.WordRendering(word_list: str = 'input', result_key: str | None = None, content_key: str | None = None, badge_shape: str = 'star', badge_color: str = 'blue', classes: list | None = None, threshold_key: str | None = None, threshold_value: int | float | None = None, position: str = 'after')[source]
Bases:
BaseObject
Object for rendering badges on individual words
Example usage:
>>> import aisquared >>> my_obj = aisquared.config.rendering.WordRendering() >>> my_obj.to_dict() {'className': 'WordRendering', 'params': {'wordList': 'input', 'resultKey': None, 'contentKey': None, 'badgeShape': 'star', 'badgeColor': 'blue', 'classes': None, 'thresholdKey': None, 'thresholdValue': None 'position': 'after'}}
- property badge_color
- property badge_shape
- property classes
- property content_key
- property position
- property result_key
- property threshold_key
- property threshold_value
- property word_list
aisquared.config.rendering.utils module
Module contents
The aisquared.config.rendering subpackage contains objects for configuring how rendering of predictions is to occur.